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The baryon —E-meson coupling constants are here
smaller than the baryon-pion coupling constant by
reasonable factors.

CONCLUDING REMARK

The formalism described in Secs. I and II is a quite
general concise formulation of the usual baryon-pion
and baryon-kaon interactions, provided the property
(8) is true.

One may say that the experimentally suggested prop-
erty (8) can be Nnderslood in terms of this formalism.
The extension of the formalism to mesons, discussed in

Secs. III and IV, leads to the property (M), which may
be verified only by experiment. If both (8) and (~)
were true, the formalism presented would be a general
tool to write down and discuss all baryon-meson inter-
actions. The assumption of equal parities and spins of
all elementary baryons and all elementary mesons plays
an essential role in the presented formulation of the
formalism.
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The connection between Regge poles, bound states and resonances, and asymptotic behavior in momentum
transfer is reviewed within the framework of the analytically continued Smatrix, and a convergent iteration
procedure is given for calculating the position and residue of a Regge pole in terms of a given (generalized)
potential. By examining the long-range potential in the xm system, it is inferred that Regge poles should
appear in the I=0 and 1= 1 states, and that the latter pole may be responsible for the p meson while the
former may well dominate high-energy behavior at low-momentum transfer in the crossed channels. The
connection of this possibility with forward coherent (diffraction) scattering in general is explored, and a
number of experimental predictions are emphasized. Finally it is shown that the short-range forces due to
exchange of 4, 6, ~ ~ ~ pions are likely to be repulsive and must be included in some form if a consistent
solution is to be achieved.

I. INTRODUCTION

' 'N the S-matrix theory of strong interactions, dy-
e ~ namical resonances and bound states have been
easily and naturally handled insofar as partial-wave
(one-variable) dispersion relations are concerned, but
they have been a source of confusion with respect to
double-dispersion relations. Froissart' showed that par-
tial waves with J& 1 are completely determined by the
double-spectral functions; at the same time, as empha-
sized in the original paper by Mandelstam, ' resonances
or bound states require subtractions in the double-
spectral integrals if the usual convergence criteria are
applied. The resolution of this dilemma was given by
Regge for nonrelativistic potential scattering, where in
fact all partial waves are determined by the double-

*Work done under the auspices of the U. S. Atomic Energy
Commission.

$ Present address: Laboratory of Nuclear Studies, Cornell
University, Ithaca, New York.

z M. Froissart, Phys. Rev. 123, 1053 (1961).
i S. Mandelstam, Phys. Rev. 112, 1344 (1958).

spectral function (even though in the absence of a
"crossed" channel, the considerations of I"roissart are
inapplicable). Regge's explanation is based on the oc-
currence of poles in the complex angular momentum
plane and the association of such poles with resonances
and bound states. '

The point at issue is essentially the asymptotic be-
havior of the scattering amplitude as cos8 approaches
infinity and the energy is kept fixed. This is a highly
unphysical region but, as it is here that the double
spectral function fails to vanish, the question is of
interest to us. The number of subtractions in cos9 which
it is necessary to perform depends on the asymptotic
behavior. As subtraction terms in cose are just poly-
nomials in this variable, they correspond to low partial
waves, so that the number of partial waves which are
undetermined by the double-spectral function depends
on the number of subtractions necessary.

' T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960). See
also A. Bottino, A. M Longoni, and T. Regge (to be published).
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In Born approximation, the potential scattering
amplitude vanishes asymptotically for large cos8, and it
is reasonable to suppose that the complete amplitude
has this behavior if the potential strength is su%ciently
small. It is evident, however, that such a behavior can-
not persist as the strength of an attractive force in-
creases since, if there is a bound state of angular
momentum /, the scattering amplitude contains a pole
term with residue P &(cosg), whose asymptotic behavior
is (cos8)'. If we assume that the asymptotic behavior
does not change suddenly when a bound state appears,
we reach the conclusion that the asymptotic behavior
becomes progressively more divergent as the strength of
attraction increases. Regge's results give one great in-
sight into the nature of this divergence, and show that
it does not in fact necessitate undetermined subtraction
terms.

Although the existence of Regge poles in the rela-
tivistic S matrix has not been established, it appears
plausible that they should occur, and we propose here
to discuss mx scattering on such a basis. In particular,
we shall show that the I= 1, J= 1 resonance can plausi-
bly be associated with a Regge pole. It will also be
argued that in the I=O state there should be a Regge
pole which does not correspond to any resonance or
bound state yet discovered but which may be connected
with high-energy diffraction scattering.

An important practical consequence of an approach
in which Regge poles are recognized is that partial-wave
calculations for J&&1 are no longer necessary. Compu-
tational difficulties associated with nonzero angular
momentum in the X/D method thus can be avoided.

We list now those conclusions of Regge that are most
important from our point of view.

(a) The elastic scattering amplitude at a fixed energy,
if regarded as a function of /, may be analytically con-
tinued into the complex l plane for Rel& —~~. The only
singularities are poles that for positive (physical) kinetic
energies are confined to the upper half plane (Iml) 0);
these poles migrate to the real axis for negative kinetic
energies.

(b) On the basis of the Sommerfeld-Watson contour
representation' in the complex / plane, the amplitude
may be divided into two parts with diBerent asymptotic
behavior. The first part is an integral, along the vertical
line Rel= —~, that vanishes as cose —+ ~. The second
part consists of pole contributions that generally do not
vanish at infinity, these being of the form

P, (P;/sins. n;)P, (—cosg), (I 1)

where n; is the position of the ith pole, in the complex l
plane. It may be described as a complex-angular mo-
mentum for which there exists a bound state at the
given energy. Both n; and P, depend on the energy. As
stated above, each n; is real for negative kinetic energy

A. Sommerfeld, Partia/ Differentia/ Equations in Physics
(Academic Press Inc., New York, 1949), p. 279.

but acquires a positive imaginary part for physical
energies. (The Sommerfeld-Watson representation is,
strictly speaking, valid only for positive kinetic energy,
but the conclusions employed here about the connection
between Regge poles, bound states and resonances, and
asymptotic behavior can be justified by an analytic
continuation in E.)

If an individual (physical) partial wave is projected
out of (I.1), using the formula'

Sion
Pi(s)P. (—s)ds=— (I 2)

or (n 1) (n—+f+1)

for / integer, l ~&0, one finds

1

(n, —l) (n, +3+1)
(I.3)

so the Regge pole contributes to the 1th wave a term, for
E near E,

P(E-)/I:n(E-)+~+ 13
(1.5)

s. m l+ (E E—) (d Ren/dF) ~—„+iImn(E )

which, for /= m, has the familiar Breit-Wigner resonance
form with a width

I'=Imn(E )/(d Ren/dE)~„. (I.6)

For negative kinetic energy, Imn vanishes and we have
a bound state (i.e., a pole in E on the real E axis).

The above reasoning enables one to extend our previ-
ous result that if, at given energy, there existed a bound
state of angular momentum /, the scattering amplitude
would contain a term behaving asymptotically like

P &(cos8). We can now say that if there exists a resonance
of angular momentum l (at a given energy), the ampli-
tude will contain a term behaving asymptotically like
P (cosg), where n is complex and Ren /. If the reso-
nance is narrow, Imn is small.

Regge was able to prove that (d Ren/dE)ir„ is posi-
tive for a bound-state pole, and gave qualitative argu-
ments to show that the same would be true for sharp

Formulas employed in this section involving P may be derived
from standard integral representations for the Legendre functions,
such as given for example in Courant-Hilbert, 3fethod of 3Iathe-
matical Physics (Interscience Publishers, Inc. , New York, 1953),
Vol. I, p. 501. Note that formula (I.2) is correct for integer l oofy.

a result that is immediately interpretable in terms of
bound states and resonances. Consider a particular
Regge pole and suppose that at some energy E=E,
Ren is equal to an integer m&~ 0. In the neighborhood of
E we may write

Ren(E) =rN+ (E—E„)(d Ren/dE) g,
Imn(E) =Imn(E ),

and
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sins-n " P (s')
ds (I 7)

and give such a formula a meaning for Rem&0 by
analytic continuation. Thus, one may, in such a sense,
write unsubtracted dispersion relations in cos8 (or,
equivalently, momentum transfer), even when the
asymptotic behavior of one or more pole contributions
seems to require subtractions. Individual partial waves
need not be separated, all being determined by the same
spectral function. An alternative but equivalent state-

6 The cut in the full amplitude satisfying the double-dispersion
representation begins at a point z=z„where z,)1.The contribu-
tion from the interval 1&z&z, is canceled by the residual
Sommerfeld-Watson integral.

resonances —which normally occur at low energies. ' One
may conjecture that when (d Reer/dE)E is negative one
is not dealing with a resonance but with the familiar
high-energy return of the phase shift through 90 deg
that always occurs in potential scattering. We add the
remark that an analysis of the Born series suggests that
Ren& ——', at suKciently large ~tE.

For superpositions of Yukawa potentials, all Regge
poles are connected with bound states and resonances,
and thus may be presumed to have the following general
behavior in the complex I, plane with E real: For a
repulsive potential there are no poles for Ret& ——,'. For
an attractive potential a particular pole passes through
n= —

~ at some negative E, and moves to the right along
the real axis as E increases. When E reaches zero the
pole moves into the upper half plane, perhaps continuing
its rightward movement temporarily but eventually
swinging back through the vertical line, Rel= —2. For
weak potentials the pole will leave the axis before
reaching even 1=0, and there are no bound states. If
Ren never reaches zero, even for positive E, then there
are also no resonances. As the potential strength in-
creases the rightward excursion of the pole will be ex-
tended, both the portion on the real axis and the portion
in the upper half plane. In other words, there will de-
velop bound states and resonances of higher and higher
3, and we note the familiar circumstance that if /, „is
the maximum value of l for which a bound state or
resonance occurs then all /&~/, have bound states or
resonances. There may, of course, be several poles
present at once.

Consider now the possibility of representing the coso
(or momentum transfer) dependence of the amplitude
by an unsubtracted dispersion relation. The "back-
ground" contour integral vanishes {& L1/(cos8)&j} as
cose —& ~ and presents no problem. The Regge poles
(I.1) seem to cause trouble. However, it can be shown
that 8 (—s) for arbitrary n is an analytic function in the
s plane cut along the positive real axis from 1 to ~,' and
that the discontinuity across the cut is 2i sinsnP (s).—
Since I' (s) ~ s for s ~ oo, we may for Ren(0 write the
dispersion relation

ment is to say that formula (I.7) requires subtractions
when Reo. &~0, but the subtractions are not arbitrary,
being determined by analytic continuation. Of course,
since the form of a Regge pole term is known explicitly,
there is never a need to express it as a Cauchy integral.
We are eager here, however, to exhibit the relation with
dispersion theory.

How much of the above is it reasonable to conjecture
will hold for a relativistic m-m. scattering amplitude) We
think that with two modifications all the above argu-
ments will stand. The first point is trivial: the non-
relativistic kinetic energy E should be replaced by the
relativistic s, the square of the total energy in the
barycentric system. The second is that the region of
analyticity in the complex / plane need not include the
point )=0, so the "background" portion of the ampli-
tude —i,e., everything in addition to the Regge poles —is
not necessarily expected to vanish as cos0~ ~. Thus
we must keep in mind the possibility of making an
5-wave subtraction and not determining the l =0 ampli-
tude entirely through double-dispersion integrals. All
higher partial amplitudes should be so determined,
however, with Regge poles appearing in those isotopic-
spin states where the force is attractive.

Our confidence in the generality of the Regge poles
has a twofold base: (a) It is known that resonances and
bound states correspond to poles in the complex-energy
plane, relativistic or nonrelativistic, and Regge was able
to make a one-to-one correspondence between poles in
8 for / real and 6xed, and poles in 1 for 8 real and fixed. '
In the relativistic case Froissart has established ana-
lyticity in a certain region of the / plane, ' and it is
intuitively appealing that this region can be enlarged as
in potential theory, provided we allow isolated poles.
(b) Two of the present authors' have proposed a defini-
tion of a relativistic generalized potential that leads to
dynamical equations closely similar to the equations for
nonrelativistic potential scattering. We do not enlarge
on this point here, since it has been discussed in reference
8 and will arise again in what follows.

In the following section we review the 5-matrix ap-
proach to nonrelativistic potential scattering, showing
how the Regge poles are to be extracted and how they
are related to the partial-wave N/D problem. The final
section discusses possible Regge poles in the relativistic
mw amplitude.

II. CALCULATION OF REGGE POLES IN
NONRELATIVISTIC POTENTIAL

SCATTERING

It has been shown by Slankenbecler et at.' that, for
nonrelativistic scattering by a superposition of direct

M. Froissart, Department of Physics, Princeton University,
invited paper at the International Conference on the Theory of
Weak and Strong Interactions, I.a Jolla (1961) (unpublished).

s G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).' R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (New York) 10, 62 (1960).
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Yukawa potentials, the double-spectral function is de-
termined by the following equation, first derived in
Ref. 2:

cording to Regge, '

A (q', I) =A'(q', t)

1 1
p(q' t) =

2m'g"

D*(I',qs)D(l",q')
dt'dt" . (II.1)

K-*'-(q'; l,l', 1")

P'(q')
P.,&, , ~

—1—
~, (II.6)

' sin~n, (q')
' «2q')

The integration is restricted to that part of the region
t )t' +t"*for which

, p(q", 1)
D(i,q') = n(i)+- dq"

7l g g
(II.3)

where e(t) determines the configuration space potential
U(r) through the formula

1 exp( —
th )

U(r) = — — dl e(l)
2zM' r

Generally speaking there is some positive threshold Ip,

such that e(i) vanishes for t (is. We shall speak of ts ' as
the "range" of the potential.

As has been explained in reference 2, the pair of
equations (II.1) and (II.3) uniquely determines D(t,q')
since the nature of the integration region in (II.1) ensures
that ri iterations give a result exact for i( (e+1)'ts. In
other words the Born series for D(t,q') certainly con-
verges (although not necessarily uniformly in t) regard-
less of the occurrence of resonances or bound states. It
is well known, on the other hand, that the Born series
for the scattering amplitude A(q', 1) does not always
converge, a circumstance that at first sight is puzzling if
one expects the unsubtracted dispersion relation

1 D(I',q')
A (qs, t) =— dt' (II.S)

to be meaningful. In Eq. (1.7) above, however, we have
seen that when Regge poles occur with Ren&~0 the
in.tegral (II.S) is not defined in the elementary sense but
only through analytic continuation; so precisely when
the first resonance or bound state appears the possibility
of expanding D in a power series no longer implies that
A similarly can be expanded.

Nevertheless, a knowledge of D(i,q') implies a knowl-
edge of A (q', t), as we shall now show, so the iteration of
Eqs. (II.1) and (II.3) actually forms the basis for a
practical method of calculation —with or without bound
states or resonances. The essential point is that, ac-

K(q' t,t', t")= t'+t"+t"'
—2(li'+a"+A") —(u'1"/q') (II.2)

is positive. The function D(i,q ) is the discontinuity in
the amplitude in crossing the positive t axis with q' fixed;
it is related to the potential and to the double-spectral
function by

where A'(q', t) is the background term that vanishes as
t —+ eo (we may also allow A' to contain Regge poles
with Re&r, (0).Then by reference to (I.7)

D(i,q') =D'(i,q') —2 &'(q')P-, &"i 1+
I

(II 7)
2/2

with the integral

1 D'(t', q')
A'(q', t) =— dk'

defined in the elementary sense. Thus if it is possible to
decompose D (t,q') according to (II.7)—so that one has a
separate knowledge of D'(t, q'), P, (q'), and n;(q') —then
one can construct the amplitude A (q', 1).

An elementary method for determining &r, (q') and
P;(q') may be based on the dominance of the Regge
poles over the background term for large t. Suppose that
there is only one pole for which Ren&~ 0; then, for suffi-
ciently large 3, this pole will be dominant in formula
(II.7), and one may calculate the position &r, (qs) and the
strength P, (q') by equating, at large 1, the calculated
D(t, q') with P;P,[1+(t—/2q')5 . One t.hen subtracts
out this pole term at all t to obtain the background term
D'(t, qs). If there is more than one pole, the one for which
Ren; is largest can be determined first and subtracted;
the remainder will then be dominated by the pole with
the next largest Rem;, and the procedure can be repeated
until all pole parameters are determined. In an actual
numerical calculation one may wish to use a more
elegant approach, but there seems nothing in principle to
prevent the extraction of the necessary information
from the iterative solution for D(t,q'). 's

Note that when the potential problem is approached
in this way there is no need to treat any partial waves
separately. In principle an alternative to separating and
identifying the Regge poles is to calculate individually
by N/D method all waves for / ~& (Ren),„.When these
low-partial waves are subtracted out of formula (II.S)
the remainder of the integral (containing all high waves)
converges in the elementary sense. The necessary in-
gredient for the X/D partial-wave calculation is the
discontinuity across the left-hand cut; this is given for

' It is reassuring to note that iteration of the behavior
D(t,q') 0:t «'& at large t in (II.1) leads to the consistent result
p(q', t) ~ t~«') if a(q') has a nonzero imaginary part for q2) 0 This
consistency is most easily established using a transformation of
(II.1) due to M. Froissart (to be published).
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the tth wave by

ImAi(q')
q (—tp/4 4q2

—4q

dt P,
~
1+ ~D(t,q'), (II.9)

(
2q'f

lyticity in t), it follows that

Ar(s, t)
tv~(s)

t,s
(III.3)

and presents no difficulty of principle if, as conjectured
in Sec. I, the Regge poles all retreat through the vertical
line, Ret= ——',, for large tq'~. In this case ImAi(q')
vanishes sufficiently rapidly as q' —+ —~ so that the
1V/D integral equations are nonsingular. In practice,
however, for all l&0, delicate cancellations must occur
between the right and left cuts to produce the correct
threshold behavior, Ai(q') ~ (q')' near q'=0. The N/D
equations then become awkward from a numerical
standpoint, so an approach that does not separate par-
tial waves is preferable.

v2'(t, s)= Q prr D.i'(t, s),
I'=0, &,2

(III.1)

where the crossing matrix p has the form, "
1/3 1 5/3

prr = 1/3 1/2 —5/6 ,
.1/3 —1/2 1/6 .

(III.2)

and D, i (t,s) is the elastic absorptive part for isotopic
spin I scattering in the t channel. As discussed below,
the imaginary part of v, r(t, s), which develops at large
s, produces inelastic scattering in the s channel that is
not properly bounded by unitarity. An approximation
which replaces v by v2 then leads to inconsistencies in
the case of actual physical interest. Contributions from

, v6, etc. must be added to correct this deficiency,
but it will be argued below that the low-energy effects of
these shorter-range potentials are probably repulsive, so
we should be able to discuss qualitative questions on the
basis of (III.1).

If Regge poles in fact dominate asymptotic behavior
in the relativistic amplitude, as discussed above for the
nonrelativistic case, then for the interval in s such that
a small number of poles are consistently to the right of
all other singularities (and within the region of ana-

III. REGGE POLES IN RELATIVISTIC
mm SCATTERING

We now illustrate by a discussion of xm- scattering our
conjecture that Regge poles occur quite generally in the
relativistic strong-interaction S matrix. Consider the
three amplitudes Ar(s, t) which represent pure I scat-
tering (I=0, 1, 2) in the s channel. Two of the authors
have defined a "generalized potential, " here to be de-
noted by vr(t, s), which is to be used in equations of the
type (II.3) and (II.1) in place of the nonrelativistic po-
tential v(t). ' The "long-range" part of the generalized
potential, exact for t(16m, is associated with 2-pion
exchange, and is given by

if nr(s) is the position of the pole farthest to the right in
the t plane and Dr(t, s) is the discontinuity in Ar(s, t) in
crossing the positive t axis. An appropriate general
definition of the "strip" region discussed earlier in a
qualitative way by two of the authors would be just
this interval in s." (The earlier definition of the "strip"
was linked to the approximation e =v2 . We now wish
to dissolve this link. ) If the analogy with nonrelativistic
potential-scattering holds, we expect nr(s) to increase
with the strength of the generalized potential vr(t, s),
when v corresponds to attraction; furthermore, we ex-
pect dnr/ds to be positive for s(4. For s)4, nr(s)
becomes complex, but the real part is continuous and
should reach a maximum value at some moderate value
of s, eventually falling to a negative value for s suK-
ciently large.

From the elements of the crossing matrix (III.2) one
sees that all contributions to v2

= are attractive and
stronger than (or at least as strong as) in the other two
I-spin states. Thus if any Regge poles develop, the one
standing farthest to the right in the / plane at a given s
should be in the I=0 state. If mr='(s) is still positive for
some range of negative s then in the crossed channel
(where t corresponds to energy and s to momentum
transfer) the high-energy behavior at fixed (low) mo-
mentum transfer evidently will be controlled by the
I=O Regge pole. We now examine the connection be-
tween this possibility and constant limits for high-
energy total cross sections.

From the optical theorem it follows that

Dr(t, s=0)= (pit&/16m)oi. ir(t), (III.4)

where Dr(t, s) is the complete absorptive part in the t
channel and O.t,t is the total cross section, both quanti-
tites for isotopic spin I in the t channel. Then, since

D'(t, s) =Ps Prr'D'(t, s), (III.5)

a glance at the elements of Prr in (III.2) shows that no
cancelation can prevent a behavior

D'='(t, O)~t, as t &", —(III.6)

if each total cross section O.t, t~ approaches a constant.
Such asymptotic behavior, pointed out in an earlier
paper by two of the authors, " implies that

nr='(s=O) =1. (III.7)

At first sight this last requirement seems to predict a
bound-P state of zero total energy, but symmetry re-
quirements eliminate all odd I, waves with I=0. Because
of the presence of exchange as well as direct forces, the

"G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). "G. F. Chew and S. C. Prautschi, Phys. Rev. 123, 1478 (1961).
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'='(t, s) =P D '='(t, s), (III.8)

when D,~
=' contains a P-resonance contribution, is

attractive and has roughly the required strength to
produce the /=1 I' resonance in question. Now Ppl
= 2Prr, so the corresponding contribution to t r=' is twice
as attractive as (III.8) and might well produce a bound
P state.

The above argument implies that

err=i(s=0) (1, (III.9)

which is consistent with the experimental requirement
that Rerrr='(s =28) = 1,"and the theoretical expectation
that for s(28, d Reu/ds is positive. Since Pst= —Ptr, the
potential ~l=' is probably repulsive and no Regge pole
will even appear in the I=2 state. Thus, we expect

potential determining even physical values of l is differ-
ent from that determining odd values of l. Nevertheless
we must ask the question: Is it reasonable to expect a
direct potential equal to el=', if it were effective in both
odd and even l states, to be sufficiently attractive as to
bind a P stateP We believe the answer to be affirmative
because qualitative arguments have shown that a
"bootstrap" mechanism probably can sustain an I=1
P-wave resonance in terms of itself."In other words, a
potential

We now remark on two consequences of the assump-
tion that dn ='/ds) 0 for s(4. The first is that in view
of (III.7) we expect nr=' to vanish at some negative
value of s, a circumstance which would correspond to an
unphysical bound 5 state of imaginary energy. Gell-
Mann has pointed out to us that if the residue of such
a pole were to vanish there would be no convict with
unitarity. " If the residue does not vanish we cannot
determine the I=0 S wave from D =', but must use the
N/D method.

The second consequence of the positive derivative of
n =' with respect to s is that the width of the high-
energy elastic diffraction peak will shrink indefinitely
with increasing energy —albeit only logarithmically.
Since the first Pomeranchuk condition ensures that the
real part of the amplitude near the forward direction is
negligible with respect to the imaginary part, we have

-2
Dr(t s)— f(s)ts[~r=o(.) il

ds
g = —2q i'(1—cosa&). (III.13)

If n = is a slowly varying function of s, we may write
for small ~s~

n ='(s) =1+es, e)0) (III.14)

and thus deduce the small momentum-transfer behavior

Dr=1,2(t 0) 0
thoro

(III.10) do
- f(s)t'"= f(s) exp(s2e lnt). (III.15)

taboo

and in view of the relation

otot (t) ='(16rr/gP')Pr Prr D '(tt0), (III.11)

there follows from (III.5) the expectation that

»m«'='= lim««'='(t) =»m« '='(t) (III 12)

Sy such a mechanism, therefore, one expects to achieve
both Pomeranchuk conditions. "

It may appear strange at first sight that the Pome-
ranchuk relations should depend on the detailed struc-
ture of the crossing matrix. When one realizes, however,
that coherent elastic scattering is uniquely associated
with states in the crossed channel that have the quan-
tum numbers of the vacuum, then a select role for I=0
in asymptotic considerations is no longer surprising.
Pomeranchuk's second condition, after all, is equivalent
to the assertion that completely coherent elastic scat-
tering predominates in the forward direction at high
energy.

"G. F. Chew and S. Mandelstam, Nuovo cimento 19, 752
i1961); F. Zachariasen, Phys. Rev. Letters 7, 112 (1961).

"A 2~ I=1 resonance has recently been experimentally ob-
served at an energy of 5.3m or s, =28. For a list of references to
the many independent experiments, see E. Pickup, D. K. Robin-
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Integration of (III.15) over the elastic diffraction peak
yields the related prediction

o..i'/o„, ' ~ (aint) —'. (III.16)

Evidently, the rate of shrinkage is small; nevertheless,
precision experiments at very high energy should detect
such an effect. ' It is possible to argue, as pointed out by
Lovelace, "that experiments already are giving support
for the form (III.15) through the observed-exponential
behavior of the tail of diffraction peaks. Such behavior
is difficult to understand in any classical model but
follows immediately from the Regge pole-hypothesis.

As discussed by two of the authors, all forward diffrac-
tion peaks (~N, i UN, ~~, EN, etc.) are controlled by the
Regge pole under discussion here, if any are."The uni-
versal character of the slope e (and of course higher
derivatives if they can be measured) is another striking
feature of our mechanism. One must keep it in mind, of
course, that the diffraction peak may well be produced
by a more complicated mechanism than envisaged here.
Experiments to test the characteristic features of

r8 M. Gell-Mann (private communication)."We are indebted to K. Wilson, Dept. of Physics, Harvard Uni-
versity, for pointing out that the decrease in the elastic cross
section is only logarithmic.

C. Lovelace (to be published).
"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961).
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formula (111.15) are therefore of crucial importance.
The predictions discussed above are so startlingly non-
classical in nature that their confirmation would provide
convincing evidence for the Regge pole hypothesis.

We return finally to discuss the inconsistency in the
equations, as they are at present formulated with
e~= v~ I, in the case where there is a I'-wave resonance.
The difficulty arises essentially from the equation

which is the relativistic analog of (II.1). Here Dr is
given by

1
Dr(t, ,s) = v'(t, s)+

the analog of (II.3), and wr is in turn given in terms
of D,ir'(t, s) by the crossing equation (III.1). Now,
D, =ir'(t, s) will behave like Pi(t)s 'i'i as s approaches
infinity and, if there is a I'-wave resonance, the nj will
be greater than 1 for some values of s. We have indi-
cated that the same may well be true for D'. From
(III.17) one may deduce that if D* and D behave like
s (') at large s the contribution to the integral for p, i

from. ]'= t"= ti will behave like s'~('» ' This value of t'

and t" will contribute if t&~4/i. If p, i(s, t) behaves like
s'~&'" ' for t&4i, , it follows from (111.18)& even if
subtractions are made, that D (t,s) has the same behavior
for such values of t. On putting this behavior of D into
(III.17), we find that p, i behaves like s4~i'" ' when
t & 16ti.The procedure can be repeated and, if Rex(fi) & 1,
it appears that the asymptotic behavior of p and D as a
function of s becomes worse and worse as t increases.

It is unlikely that the oscillatory behavior of D will

decrease the asymptotic behavior of p given by (III.17).
The simplest way of seeing this is to make a Froissart
transformation by which the integral in (III.17) is re-
placed by another containing a 8 function, "so that, for
any value of t', only one value of t" contributes. The

asymptotic behavior is unchanged by this transforma-
tion. Writing this functional relationship as t"=t '(t'),
and denoting aft"(t')] by p(t'), we observe that the
contribution to the integral on the right-hand side of
(III.17) from a particular value of t' behaves like
s ")+&(").The integral of such a function over t' will
ordinarily be dominated by that value of t' for which
Ren+Rey is greatest, and cancellations will in general
not occur.

If one seeks the physical origin of the inconsistency
of our equations, the most likely culprit is the failure of
the approximation ~~= v2

~ to put a unitarity bound on
inelastic scattering. The trouble develops as soon as the
real part of any n~ becomes greater than unity, and
Froissart has shown that unitarity requires nr(s(~0)
&~ 1, a constraint that is lacking in our approximation.
To cure the disease one must take some account in the
inelastic processes of multipion exchange. An exact
treatment is, of course, out of the question, but it may
be possible somehow to impose the correct unitarity
bound. In terms of our generalized potential, wr (t,s), the
required unitarity damping in the inelastic part comes
about through 4m. , 6x, etc. contributions; it seems
plausible that such contributions appear as repulsive
forces, since their eRect has to limit the magnitude of
n(s) at low energy. One may speculate, in fact, that
there may be a universal repulsive core in at/ two-body
forces due to exchange of multiparticle systems with the
quantum numbers of the vacuum. It is for these
quantum numbers that the Froissart limit is most
closely approached, so the compensating reaction of
multiparticle contributions should here be the strongest.

The reader's attention is also drawn to a recent paper
by R. Blankenbecler and M. L. Goldberger, '0 which we
received in preprint form after completion of this manu-
script. These authors treat from a somewhat different
standpoint a number of the same questions that have
interested us.
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